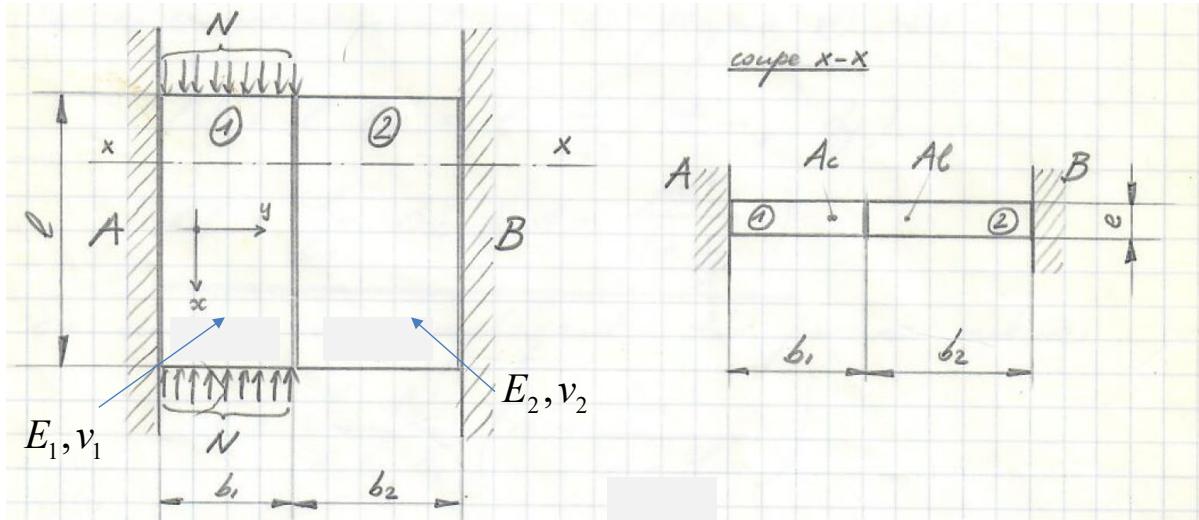


Exercise 1: A plate of steel and a plate of aluminum of the same length l are placed between two vertical rigid supports A and B. Assuming that the friction between them is negligible, calculate the decrease in length Δl of the steel plate,



Solution:

Stresses on the plates. The force N produces

1. a vertical $\sigma_x = \frac{N}{b_1 e}$ and a horizontal stress σ_y on the steel plate along the contact zone
2. a horizontal stress σ_y along the contact zone of the two plates.

Deformation.

Since the supports are rigid, we have the following condition,

$$\Delta b_1 + \Delta b_2 = 0. \quad (a)$$

Due to geometry and loading, each plate is in plane stress:

For the steel plate

$$\varepsilon_x = \frac{1}{E_1} (\sigma_x - v_1 \sigma_y), \quad \varepsilon_y = \frac{1}{E_1} (\sigma_y - v_1 \sigma_x). \quad (b)$$

$$\Delta b_1 = b_1 \varepsilon_y = \frac{b_1}{E_1} (\sigma_y - v_1 \sigma_x)$$

For the aluminum plate,

$$\varepsilon_x = \frac{1}{E_2} (-v_2 \sigma_y), \quad \varepsilon_y = \frac{1}{E_2} (\sigma_y). \quad (c)$$

$$\Delta b_2 = b_2 \varepsilon_y = \frac{b_2}{E_2} (\sigma_y).$$

From (a) we have $\frac{b_1}{E_1} (\sigma_y - \nu_1 \sigma_x) + \frac{b_2}{E_2} (\sigma_y) = 0 \Rightarrow \sigma_y - \nu_1 \sigma_x + \frac{b_2}{b_1} \frac{E_1}{E_2} \sigma_y = 0$

$$\text{Define } \varphi = \frac{b_2}{b_1}; \quad \lambda = \frac{E_2}{E_1} \Rightarrow \sigma_y = \sigma_x \frac{\nu_1}{1 + \varphi / \lambda} \quad (\text{d})$$

For the steel plate,

$$\Delta \ell = \ell \varepsilon_x = \ell \frac{1}{E_1} (\sigma_x - \nu_1 \sigma_y) \quad (\text{e})$$

$$\text{Inserting (c) in (d) we obtain, } \Delta \ell = \frac{\ell}{E_1} \frac{N}{b_1 e} \left(1 - \frac{\nu_1^2}{1 + \varphi / \lambda} \right)$$

Exercise 2: A steel tank with an internal diameter radius of $2r_i = 1.4$ m is subjected to an internal pressure $p_i = 8$ MPa. The tensile and compressive elastic limits are $\sigma_{yp} = 240$ MPa. What is the wall thickness with a safety factor of 2?

Solution

From the stress analysis, the maximum stress is at the inter surface and given by,

$$\sigma_{\theta\theta,\max} = \sigma_{\theta\theta} \Big|_{r=r_i} = \frac{r_i^2 P_i}{r_e^2 - r_i^2} \left[1 + \frac{r_e^2}{r_i^2} \right] = P_i \frac{r_i^2 + r_e^2}{r_e^2 - r_i^2}$$

From this equation we obtain,

$$r_e = \left(\frac{r_i^2 (p_i + \sigma_{\theta\theta,\max})}{\sigma_{\theta\theta,\max} - p_i} \right)^{1/2}$$

Substituting the numerical values we obtain, $r_e = 0.748$ m. The wall thickness is $0.748 - 0.700 = 0.048$ m.

Exercise 3: Demonstrate that for an annular rotating disk the ratio of the maximum tangential stress to the maximum radial stress is (ν is the Poisson ratio),

$$\frac{\sigma_{\theta\theta,\max}}{\sigma_{rr,\max}} = \frac{2}{(r_e - r_i)^2} \left(r_e^2 + \frac{1-\nu}{3+\nu} r_i^2 \right)$$

Solution

Stress analysis gave the following results for the two stress components:

$$\begin{aligned}\sigma_{rr} &= \frac{(3+\nu)}{8} \left(r_i^2 + r_e^2 - r^2 - \frac{r_i^2 r_e^2}{r^2} \right) \rho \omega^2 \\ \sigma_{\theta\theta} &= \frac{(3+\nu)}{8} \left(r_i^2 + r_e^2 - \frac{1+3\nu}{3+\nu} r^2 + \frac{r_i^2 r_e^2}{r^2} \right) \rho \omega^2\end{aligned}$$

The maximum values of these two stresses are at $r=(r_i r_e)^{1/2}$ and $r = r_i$, respectively. Inserting these values in the preceding equations it is easy to show that,

$$\begin{aligned}\sigma_{rr} \Big|_{r=\sqrt{r_i r_e}} &= \frac{(3+\nu)}{8} \left(r_i^2 + r_e^2 - r_i r - \frac{r_i^2 r_e^2}{r_i r_e} \right) \rho \omega^2 = \frac{(3+\nu)}{8} (r_i - r_e)^2 \rho \omega^2 \\ \sigma_{\theta\theta} \Big|_{r=r_i} &= \frac{(3+\nu)}{8} \left(r_i^2 + r_e^2 - \frac{1+3\nu}{3+\nu} r_i^2 + \frac{r_i^2 r_e^2}{r_i^2} \right) \rho \omega^2 = \frac{2(3+\nu)}{8} \left(r_e^2 + \frac{1-\nu}{3+\nu} r_i^2 \right) \rho \omega^2\end{aligned}$$

Thus, their ratio gives the result.

Exercise 4: Calculate the allowable angular rotation in rpm of a flat solid disk with radius $r_e = 125$ mm. The disk is made of an aluminum alloy with $\sigma_{yp} = 280$ MPa, Poisson ratio $1/3$ and density $\rho = 2.7$ kN s 2 /m 4 . Use the maximum distortion energy criterion.

Solution

In a solid disk the stresses are maxima at the origin $r = 0$:

$$\sigma_{rr}|_{r=0} = \frac{(3+\nu)}{8} (r_e^2 - r^2) \rho \omega^2 = \frac{(3+\nu)r_e^2}{8} \rho \omega^2$$

$$\sigma_{\theta\theta}|_{r=0} = \frac{(3+\nu)}{8} \left(r_e^2 - \frac{(1+3\nu)}{3+\nu} r^2 \right) \rho \omega^2 = \frac{(3+\nu)r_e^2}{8} \rho \omega^2$$

$$\Rightarrow \sigma_{rr} = \sigma_{\theta\theta}$$

The distortion energy criterion is

$$\begin{aligned} \sigma_{yp} &= \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right] \\ &= \frac{1}{\sqrt{2}} \left[(\sigma_{rr} - \sigma_{\theta\theta})^2 + (\sigma_{\theta\theta} - 0)^2 + (0 - \sigma_{rr})^2 \right] = \sigma_{rr} = \sigma_{\theta\theta} \\ \sigma_{yp} &= \frac{(3+\nu)r_e^2}{8} \omega^2 \quad \Rightarrow \quad \omega = \frac{1}{r_e} \sqrt{\frac{8\sigma_{yp}}{(3+\nu)\rho}} \end{aligned}$$

We insert the numerical values to obtain $\omega = \frac{1}{0.125} \sqrt{\frac{8 \cdot 280 \cdot 10^6}{(3+1/3)2.7 \cdot 10^3}} = 3991.1$ rad/sec.

Thus, $\omega = (3991.1)60 / 2\pi = 38,131.5$ rpm.